

University of Bucharest

Department of Chemical Technology and Catalysis

Nanostructuri catalitice continand metale nobile: sinteza, caracterizare si comportare catalitica

Vasile I. P**â**rvulescu

Diaspora în cercetarea științifică și învățământul superior din România, București, 21-24 septembrie 2010 Workshop Exploratoriu: "Nano Sisteme Dinamice: de la Concepte la Aplicatii Senzoristice"

Size dependent properties of nanoparticles

- magnetic
- optical
- melting points
- specific heats
- surface reactivity
- CATALYTIC

Ag(12nm) Au(100nm) Au(50nm) Ag(90nm) Ag(40nm)

Colors of light scattered by solutions of nanoparticles of certain sizes

Condensed Matter

Millions of atoms

Solid State Physics

d s (c)

Novel Preparations

structural embedded nano-structures

textural embedded nanostructures Heterogeneous catalysts generally consist of a high surface area support material onto which an active component has been deposited. The anchoring of active component onto the support can be carried out via a number of methods such as homogeneous deposition precipitation, ion-exchange, chemical vapor deposition and (incipient) wetness impregnation. From an industrial point of view the latter type of technique is most often favored because of its technical simplicity, low amount of waste streams and low costs. This method is based on the incorporation of active component via impregnation of a solution containing a precursor, which is typically a metal salt. By applying thermal treatments the precursor is deposited onto the support and subsequently converted into the catalytic active species.

The chemistry involved in impregnation is very complicated since many processes take place during the impregnation, drying and activation steps. It is a well-known fact that the properties of the precursor solution (e.g. type of metal salt and pH) and support (e.g. texture and surface reactivity) largely affect the final composition of the catalyst. However, still little is known about the separate influences of precursor and support on the impregnation, drying and activation processes.

Size controlled Nanoparticles in Heterogeneous catalysis

Ionic exchange

Materials: acidic (zeolites, clays), basic (LDH)

Size controlled Nanoparticles in Heterogeneous catalysis

Deposition-precipitation

Materials: a very large variety including nano- and bulk materials, porous and non-porous supports

Ionic exchange: low metal loading iridium catalysts

Catalysts preparation

The deposition of iridium on BETA zeolite involves succesive ion-exchange and condensation processes. The generation of new protons is also possible.

Catalytic reaction: synthesis of prostaglandin derivatives

Angew. Chem., Int. Ed. Engl., 115 (2003) 5491-5494.

Hydrogenation of enones

Optimal catalyst

Angew. Chem., Int. Ed. Engl., 115 (2003) 5491-5494.

Why 1% Ir/beta??????

Reduction degree, hydrogen up-take and Ir dispersion on beta-zeolites

Catalyst	alyst Reduction temperature						
	250 °C			450 °C			
	Reduction	H ₂ up-take	, Metal	Reduction	H ₂ up-take,	Metal	
	degree, %				cm ³ g ⁻¹	dispersion, %	
1%Ir/BEA	14	0.03	18.2	25	0.05	17.1	
2%Ir/BEA						8.1	
3%Ir/BEA	58				0.08	3.4	
5% Ir/Beta	69					2.4	
1%Ir/Beta-5					0.05	18.3	
2% Ir/Beta-5					0.08	9.2	
3%Ir/BEA-50	0 54			66		4.9	
5% Ir/Beta-5	67	0.18	4.7		0.18	4.1	
1%Ir/Beta-7	13	0.03	19.5	21	0.05	19.8	
2%Ir/Beta-7	23	0.06	11.7	35	0.09	10.8	
3%Ir/Beta-7	50	0.13	7.5	62	0.14	6.5	
5% Ir/Beta-7	63	0.25	6.8	73	0.26	6.0	

Reduction degree, hydrogen up-take and Ir dispersion on beta-zeolites

Catalyst

1%Ir/MCM-41

2%Ir/MCM-41

3%Ir/MCM-41

5%Ir/MCM-41

1% Ir/SiO₂

2% Ir/SiO₂

3%Ir/SiO₂

5% Ir/SiO₂

1%Ir/ZrO₂

2%Ir/ZrO₂

3%Ir/ZrO₂

5% Ir/ZrO₂

dispersion on be	eta-zeolites	116 °C
Reduction	H ₂ up-take,	
degree, %	cm ³ g ⁻¹	dispersion, %
36		33.4
48		Temperature. C
75		9.4
89		$6.5 110 \circ C IWt\% Ir/MCM-41$
37		9.4
46		4.3
77		2.6
88	0.09	1.7
29	0.02	6.8
44	0.04	3.8 53 °C
71	0.05	$\frac{2.2}{\sqrt{3}}$ $\frac{3}{\sqrt{3}}$ $\frac{3}{\sqrt{3}}$ $\frac{3}{\sqrt{3}}$ $\frac{3}{\sqrt{3}}$ $\frac{3}{\sqrt{3}}$
85	0.07	1.4 113 °C

185 °C

Temperature, C

1wt%

XPS Binding energies, and Ir//Irⁿ⁺ and Ir/Si(Zr) ratios

Catalyst	Binding energy of Ir ^o /Ir ⁿ⁺ Ir levels, eV ratio			Binding energy, eV	Comparative Ir/Si ratios x 10 ³	
	Ir ⁰			Si _{2p} Al _{2p} O _{1s}	Analytic	XPS
	lr _{417/2} lr _{415/2}					
1%Ir/BEA	61.4 64.6		0.42	103.5 74.8 532.8	3.3	6.0
1%Ir/BEA*	* 61.5 64.7			103.5 74.8 532.8	3 3.3	6.2
1%Ir/BEA**	* 61.5 64.7				3 3.3	5.9
2%Ir/BEA	61.2 64.4			103.6 74.8 532.8	6.6	11.2
3%Ir/BEA	61.2 64.2		1.70	103.6 74.6 532.8	9.9	20.6
5%Ir/BEA	61.2 64.3	62.6 65.2	1.47	103.6 74.7 532.8	3 16.5	42.1
1%Ir/MCM-4	1 61.2 64.4	62.5 65.0	1.71	103.8 - 533.	0 3.1	2.5
1%Ir/SiO ₂	61.5 64.6	62.5 65.3	1.68	103.7 - 532.	8 9.6	20.0
1% Ir/ZrO ₂ *	61.7 64.8	62.3 65.2	0.31	-* - 531.9	6/Z r:	40.0

*-The binding energy of Zr_{3d}: 182.2 eV; **-zeolite precalcined at 700 °C; ***- catalyst reduced at 250 °C.

¹⁹³Ir Mossbauer spectrum

Desorption temperature: 200 °C

The new band at 1453 cm⁻¹ may suggest either the existence of a new Lewis site (Irⁿ⁺) or the re-adsorption of Py via H bonds forming Py-H species (also assigned to the presence of Ir).

CP/MAS²⁷Al-NMR

Reaction mechanism

H

Cram-chelate rule

Angew. Chem., Int. Ed. Engl., 115 (2003) 5491-5494.

Effect of the particle size:

Synthesis of menthols from citronellal

Citronellal hydrogenation

Influence of the metal loading and support

Ir/NaBeta25S

Ir/HBeta25

Reaction conditions:

0.8 MPa H₂, 80 C, cyclohexane, 10h

Citronellal isomerization

Influence of Ir and of the support

Reaction conditions: 80 C, cyclohexane

XPS Binding energies, and Ir//Irⁿ⁺ and Ir/Si(Zr) ratios

Catalyst	Binding energy of Ir levels, eV		Irº/Ir ⁿ⁺ ratio	Binding energy, eV	Comparative Ir/Si ratios x 10 ³	
	Ir ⁰			Si _{2p} Al _{2p} O _{1s}	Analytic	XPS
	Ir _{417/2} Ir _{415/2}					
1%Ir/BEA	61.4 64.6			103.5 74.8 532.8	3.3	6.0
2%Ir/BEA	61.2 64.4			103.6 74.8 532.8	6.6	11.2
3%Ir/BEAS	5 61.2 64.2			103.6 74.6 532.8	9.9	20.6
3%Ir/BEA	-S 61.2 64.2	62.7 65.2	1 1.70	103.6 74.6 532.8	9.9	20.6
5%Ir/BEA	61.2 64.3		2 1.84	103.6 74.7 532.8	16.5	42.1

Fourier transforms of EXAFS

HRTEM- 1% Ir/Na-BEA-S

HRTEM- 3% Ir/Na-BEA-S

Deposition-precipitation

How the story starts?

Echavarren suggested that gold could be an efficient catalyst for coupling reactions

C. Nieto-Oberhuber, S. Lopez, A. M. Echavarren, J. Am. Chem. Soc. 127 (2005) 6178

Why not to use gold for cycloisomerisation reactions to obtain heterocycles?

What kind of heterocycles?

A lactone is a cyclic ester in organic chemistry

... and it is the condensation product of an <u>alcohol group</u> and a <u>carboxylic acid group</u> in the same molecule.

Importance of lactones

Lactones are found in various forms in numerous naturally occurring compounds.

whisky lactone

How they have been synthesized?

>by conventional Lewis acids

≻toxic Hg salts

≻Pd, Ru, Rh, Ni, Ag, Zn

Conditions:

elevated temperatures

additives or ligands or/and strong base

refluxing solvents

Why we should use gold?

- mild conditions, no additives

Gold homogeneous catalysis

Unsubstituted substrate

96%

Conditions: 10 mol% AuCl acetonitrile RT, 1h K₂CO₃

H. Harkat, J.-M. Weibel, P. Pale, Tetrahedron Letters, 2006, 47, 6273

Gold homogeneous catalysis

Substituted substrate

acetonitrile No use of a base RT, 2h

E. Genin, P. Y. Toullec, S. Antoniotti, C. Brancour, J.-P. Genet, V. Michelet, JACS, 2006, 128, 3112

Gold homogeneous catalysis

MeO₂C

Conditions: 5 mol% AuCl or AuCl₃

acetonitrile

No use of a base

RT, 2h

E. Genin, P. Y. Toullec, S. Antoniotti, C. Brancour, J.-P. Genet, V. Michelet, JACS, 2006, 128, 3112
? Heterogeneization by gold-ionic exchange?

ZSM-5

+ AuCl or AuCl₃

0% conversion

Beta zeolite

0% conversion

How heterogenize the gold system?

How heterogenize the gold system?

A. Corma, P. Serna, *Science* 2006, *313*, 332 and references herein S. Carrettin, J. Guzman, A. Corma *Angew. Chem. Int. Ed.* 2005, *44*, 2242-2245

$\frac{\text{Catalytic tests}}{R^1 R^2}$	old catalyst, CH ₃ CN 8h, RT-40 C		
		<u>Conversion</u>	Isolated yield
	Au/Ceo	0%	1
MeO ₂ C HO O	Au/MgOL	0%	/
Substituted acetylenic acid, reactive	Aumo,	50%	25%
Chem. Eur. J. 14 (2008) 9412- 9418.	Au/Beta	100%	99%

TEM images and EDX analysis of Au/zeolite beta

F. Neațu, Z. Li, R. Richards, P. Y. Toullec, J.-P. Genêt, K. Dumbuya, J. M. Gottfried, H.-P. Steinrück, V. I. Pârvulescu, V. Michelet, *Chem. Eur. J.* 14 (2008) 9412-9418.

TEM images and EDX analysis of Au/MgO

50

Chem. Eur. J. 14 (2008) 9412-9418.

Surface area and average particle size of supported catalysts

Catalyst	Au loading [wt.%]	Surface area [m ² g ⁻¹]	Average Au particle size [nm]*
beta	-	464	
Au/beta	4	383	3-5
Au/CeO ₂	4		5-12
Au/MgO	2	62	3-12
Au/TiO ₂	4	42	5-8

*measured from TEM

Chem. Eur. J. 14 (2008) 9412-9418

Catalytic tests

Substituted acetylenic acid

Very good results, comparable with the results obtained in homogeneous catalysis.

RT

60% (90%)

65% (70%)

Performing the reaction at room temperature corresponded to smaller reaction rates Yield% (Conv.%)

Chem. Eur. J. 14 (2008) 9412-9418

Catalytic tests

Unsubstituted acetylenic acid

<mark>0% (0%)</mark>

40 C

0% (0%)

0% (0%)

NO REACTION

Yield% (Conv.%)

V.I. Pârvulescu et al., Chem. Eur. J. 14 (2008) 9412-9418

Performing the reaction at room temperature corresponded to smaller reaction rates Yield% (Conv.%)

Chem. Eur. J. 14 (2008) 9412-9418

Performing the reaction in ARGON atmosphere gave much LOWER results then performing reaction in AIR.

In-situ high-pressure XPS of the Au/beta catalyst

Chem. Eur. J. 14 (2008) 9412-9418

In-situ high-pressure XPS of the Au/beta catalyst

No change observed when using a reducing species- like CO

> Even the initial sample was preserved in atmosphere conditions, the gold was reduced in the vacuum chamber of the XPS.

> No further reduction of Au(I) to Au (0) in the presence of CO, could be due to the Au species is incorporated into the zeolite framework .

In-situ high-pressure XPS of the Au/beta catalyst Oxygen

Au in oxidized state (Au III)

Au in reduced state (Au I)

The reduction of the active site Au(III) to Au(I) in the presence of the acetylenic acid substrate is leading to inactive catalysts. The role of air is to reoxidize the inactive site Au(I) to the active site Au(III).

Chem. Eur. J. 14 (2008) 9412-9418

Recycling of the heterogeneous gold catalyst

YieldConversion

Chem. Eur. J. 14 (2008) 9412-9418

The colloid concept

Precursor concept to heterogeneous catalysts

uMX, $+vM'(BR_3H)_u \rightarrow uM\downarrow+vM'(BR_3X),+uv/2H_2\uparrow$ M= metal powder; M' =alkali or alkaline earth metal; R=C₁-C₈ (alkyl); X= OH, OR, CN, OCN, SCN.

H. Bönnemann, W. Brijoux, Advanced Catalysts and Nanostructured Materials (Ed.: W. R. Moser),
Academic Press, San Diego, 1996, p. 165.
H. Bönnemann and R. Richards, *Eur. J. Inorg. Chem.* 2001, 2455-2480

Hidrogenolysis

1,1a,6,10b-tetrahydro-1,6-methanodibenzo[*a,e*]cyclopropa[*c*]-cycloheptene over silica- and zirconia-embedded Ru-colloids
J. Mol. Catal., 178 (2002) 79-87; J. Mol. Catal. A: Chemical, 186 (2002) 153-161.

<u>Chem Ind.</u>, 82 (2001) 301-306.

Nanoalloys

the

simple dried

Route R: thr dried catalysts wre directly reduced in hydrogen at 723 K

Route C: the dried catalysts were calcined in air at 723 K and then reduced at the same temperature

Eur. J. Inorg. Chem., (2000) 819-822.

Chem. Eur. J. 2006, 12, 2343 – 2357

The chemoselectivity to 3-hexen-1-ol $\diamond, \triangle, \bigcirc, \bigcirc$) and regioselectivity for cis-3-hexen-1-ol $\diamond, \blacktriangle, \blacksquare, \bigcirc$) on the catalysts differently pretreated (\diamond, \diamond -1%(Pd) $\triangle, \blacktriangle$ -0.6%(Pd); \Box, \blacksquare - 1%(Pd-Au); \bigcirc, \bullet -1%(Au))

reduction of NO and NO₂ by isopentane under lean conditions

Liga	Ligands used in stabilization of the colloids, the amount of recovered Pt and								
the m	the mean particle size								
Colloi	d Stabilizing ligan	ds Chemical formula	Recovered Pt in isolated colloid [%]	Mean particle size [nm]					
Pt-1	$N^+(C_8H_{17})_4Br$	tetraoctylammonium bromide	83	3					
Pt-2	QUAB 342	3-chloro-2-hydroxy-pro dimethyldodecyl ammonium chloride	pyl 81	3					
Pt-3	ARQUAD 2HT-75 (distearyldimethylammo chloride	nium 80	3					
Pt-4 2	-hydroxy-propionic acid	2-hydroxy-propionio acid	c 58	12.5					
Pt-5 R	EWO PHAT E1027	alkylphenol-polyglyco ether phosphate ester	1 68	5					
Pt-6	TWEEN 40	polyoxyethylene sorbit monopalmitate	an 64	7					
Pt-7 po	olyethyleneglycol dodecylether	polyethyleneglycol dodecylether	69	5					

Table 2. Testural properties of SiO ₂ and SiO ₂ =Ta ₂ O ₅ embedded Pt colloids after calcination at 773 K.									
Colloid		SiO ₂ embedded Pi	t	SiO,	-15 %Ta ₂ O ₅ embedd	led Pt			
	Pt con- tent[wt%]	Surface area [m²g⁻¹]	Pore size (nm)	Pt con- tent [wt%]	Surface area [m²g ⁻¹]	Pore size (nm)			
Pt-1	2.93	416	3.1	2.95	446	3.1			
Pt-2	2.98	423	4.4	2.92	467	4.4			
Pt-3	2.97	386	5.4	2.94	432	5.4			
Pt-4	3.04	235	2.9	2.98	265	2.9			
Pt-5	2.95	326	4.5	2.99	343	4.5			
Pt-6	2.96	276	3.5	3.03	298	3.5			
Pt-7	2.97	460	4.2	2.93	495	41			

Table 3. Textural properties of SiO ₂ and SiO ₂ -Ta ₂ O ₅ embedded Pt colloids after extraction with ethanol-hep- tane azeotropic mixture.								
Catalyst	Pt extrac- ted [wt%]	Si–Pt supports Surface area (m²g ⁻¹)	Pore size (nm)	Pt_extrac- ted [wt%]	SiTa-Pt supports Surface are a (m² g ⁻¹)	Pore size (nm)		
Pt-1	79	523	6.2	81	553	6.4		
Pt-2	81	491	13.0	82	501	13.2		
Pt-3	83	459	7.2	85	472	7.5		
Pt-4	88	645	5.8	91	623	6.2		
Pt-5	91	435	9.5	93	432	9.6		
Pt-6	90	421	9.0	91	437	9.1		
Pt-7	90	659	5.6	92	671	5.8		

ChemPhysChem 2007, 8, 666 – 678

NO conversion on Si–Pt catalysts (5000 ppm NO, 5000 ppm isopentane, and 5% vol. O₂, 100 mg, W/F=2 gsmL⁻¹)

NO₂ conversion on Si–Pt catalysts (5000 ppm NO, 5000 ppm isopentane, and 5% vol. O₂, 100 mg, W/F=2 gsmL⁻¹)

Isopentane conversion on Si–Pt catalysts (5000 ppm NO, 5000 ppm isopentane and 5% vol. O_2 , 100 mg, W/F=2 gsmL⁻¹)

Size dependent selectivity in deNOx processes

$$\begin{split} &16 \text{ NO} + \text{C}_{5}\text{H}_{12} \longrightarrow 8\text{N}_{2} + 5 \text{ CO}_{2} + 6 \text{ H}_{2}\text{O} \\ &96 \text{ NO} + 3\text{C}_{5}\text{H}_{12} \longrightarrow 48 \text{ N}_{2}\text{O} + 15 \text{ CO}_{2} + 18 \text{ H}_{2}\text{O} \\ &2\text{NO} + \text{O}_{2} \longrightarrow 2\text{NO}_{2} \\ &8\text{NO}_{2} + \text{C}_{5}\text{H}_{12} \longrightarrow 4\text{N}_{2} + 5 \text{ CO}_{2} + 6 \text{ H}_{2}\text{O} \\ &16 \text{ N}_{2}\text{O} + \text{C}_{5}\text{H}_{12} \longrightarrow 16 \text{ N}_{2} + 5\text{CO}_{2} + 6\text{H}_{2}\text{O} \\ &\text{C}_{5}\text{H}_{12} + 8\text{O}_{2} \longrightarrow 5 \text{ CO}_{2} + 6 \text{ H}_{2}\text{O} \end{split}$$

Table 6. Selectivity of conversion to N₂ and N₂O on the investigated catalysts in reduction of NO at maximum conversion.

Colloid	Si	Si–Pt catalysts			a–Pt cataly	ests
	$T^*_{\max}[K]$	N ₂ [%]	N ₂ O [94]	$T^*_{max}[K]$	N ₂ [96]	N ₂ O [%]
Pt-1	543	53	47	523	51	49
Pt-2	553	51	49	523	52	48
Pt-3	533	55	45	543	48	52
Pt-4	573	38	62	573	36	64
Pt-5	523	65	35	553	44	56
Pt-6	573	42	58	573	38	62
Pt-7	523	64	36	553	43	57

The selectivity for conversion to N_2 reached 74% for Si–Pt-5, which may suggest that indeed a mean particle size between 8 and 10 nm is the most effective for this reaction.

lysts in reduction of NO₂. SiTa-Pt catalysts Si-Pt catalysts Colloid $T_{ms}^{i}[\mathbf{K}]$ T_{max}^{b} [K]. No [96] N₂O [99] No [96] -N₃O[%] Pt-1 \$23 65. 35 503 68. 32503 Pt-2 533 62 38 69 31 513 523 39Pt-3. 70 3061 Pt-4 543 48 52 533 42. 58 Pt-5 503 74. 26 573 58. 42 543 44 Pt-6 53. 47. 543 56Pt-7 503 72 28 533. 55 45

Table 7. Selectivity of conversion to N, and N,O on the investigated cata-

ChemPhysChem 2007, 8, 666 – 678

Un-expected selectivity

V1

V2

V3

v4 v5 Angew. Chem. Int. Ed., 48 (2009) 1085 –1088. The CO_2 -induced melting point depression during the reduction step allows the use of simple ammonium salts that would not classify as ionic liquids, resulting in solid and easy to handle catalyst materials.

Generation of matrix-embedded rhodium nanoparticles by reduction in CO_2 -induced ionic liquids. - *Left:* Physical mixture of ammonium salt and solid organometallic precursor; *Middle*: Reduction under CO_2/H_2 in the CO_2 induced ionic liquid phase (view into the high pressure reactor including the magnetic stir bar); *Right*. Solid material containing the embedded nanoparticles obtained after venting the reactor.

Angew. Chem. Int. Ed., 48 (2009) 1085 –1088.

Selected characteristic data for rhodium nanoparticles embedded in solid ammonium salts that were generated by CO_2 -induced ionic liquid phases^[a]

Catalyst	Matrix	M.p. T [⁰ C] [⁰ C] [p ^[b] [bar]	Particle size [nm]	Surface to bulk atom ratio	Rh(0) to Rh(I) ratio from XPS
Rh-1	[Bu ₄ N]Br	124 ^[c] 80	240	3.3 1.5	0.33	0.63
Rh-2	[Hex ₄ N]Br	100 ^[c] 40	150	2.3 ± 0.8	0.47	0.62
Rh-3	[Oct ₄ N]Br	98 ^[c] 60	220	1.4 ± 0.3	0.78	0.59

[a] Reaction conditions: ionic matrix (0.5 g), precursor [Rh(acac)(CO)2] (1% Rh), H2 (40 bar), and scCO2 (density: ca. 0.7 gmL1), 180 min. [b] Total pressure at reduction temperature. [c] Melting points of the pure matrix under standard conditions.

Angew. Chem. Int. Ed., 48 (2009) 1085 –1088.

Representative TEM micrograph (left, bar = 20 nm) and XPS spectra (right; A: expansion of the rhodium signals) of rhodium nanoparticles generated from [(acac)Rh(CO)₂] in [Hex₄N]Br (**Rh-2**); B: overview; Representative catalytic results for benchmark reactions using matrixembedded rhodium nanoparticles.^[a]

		H ₂		$3H_2$		
Catalyst	Phase behavior	TOF _{total} ^[b] [h ⁻¹]	TOF _{surface} [[h ⁻ 1]	^{c]} Phase behavior	ГОF _{total} [[h ⁻¹]	^[b] TOF _{surface} ^[c] [h ⁻¹]
Rh-1	immiscible	8800	26650	partially miscible	35	106
Rh-2	partially miscible	6600	14050	partially miscible	8	17
Rh-3	partially miscible	35700	45800	partially miscible	42	54

[a] Reaction conditions: T=408C, p(H2)=40 bar, neat; 1: Rh=1000:1, 2: Rh=100:1. [b] Total turnover frequency determined as mol substrate per total amount of rhodium in matrix per hour, determined from hydrogen uptake within the first 20% conversion; full conversion was reached in all cases after appropriate reaction time. [c] Turnover frequency corrected for surface-exposed rhodium centers by using the dispersion data

Selective hydrogenation of (E)-2-(benzoylamino)-2-propenoic acids using Rh-1 as catalyst

V-R2 Substrates	Reaction conditions		$TOF^{b} \ge 10^{3}$,	Selectivity ^a , %				
	T, °C	Pres. H ₂ , barr	CO ₂ , g	min ⁻¹	А	В	C	C'
V1-H	120	100	-	114.6	39	24	37	-
V1-H	120	100	7.5	11.7	49	21	30	-
V2-H	80	100	-	2614.3	30	54	16	-
V2-H	80	100	7.5	319.3	46	32	22	-
V3-Me	60	100	-	96.3	13	18	60	9
V3-Me	60	100	7.5	51.9	39	31	25	5
V3-Н	60	100	-	79.6	6	56	38	-
V3-H	60	100	7.5	41.1	17	51	32	-
V4-H	60	100	-	267.5	4	96	-	-
V4-H	60	100	7.5	122.4	100	-	-	-
V5-H	80	100	_	15.9	100	-	-	_

Ionic nanostructures

Angew. Chem. Int. Ed., doi: 10.1002/ANIE.201002090

Thus, the Au environment found for the sample Au-100 (3.6 Cl at 2.281 À) closely resembles that the tetrachloroauric acid structure, consisting of 6 Cl atoms at 2.286 Å. This points out the precursor preservation after the thermal treatment at 100°C. The reduced number of Cl neighbours in the structure of the sample Au-100 could indicate a Cldefective structure of the precursor, but also small precursor particles, influencing a lowering of the coordination number derived by EXAFS. By increasing the treatment temperature to 150°C, a large fraction of gold reduces to metallic state.

 k^2 -weighted EXAFS spectra of the Au catalysts and Au foil and magnitude of the corresponding Fourier transforms.

Au environment in the investigated Au catalysts, as inferred by the fit of EXAFS.	Sample	CN	R (Å)	o² (10⁻³ Ų)	Filtered <i>r</i> -range (Å)	R-factor
	Au-100	3.6 0.6 Cl	2.281 0.006	2 1	1.4–2.3	0.056
	Au-150	1.3 0.3 Cl 6 1 Au	2.26 0.01 2.883 0.005	32 61	1.3–3.3	0.124
	Au foil	12 Au	2.884		1.8–3.3	

^[a] Reaction conditions: 100 mg catalyst, 1.0 mL (860 mg) citronelal, 5 mL toluen, 80° C, 15 atm H₂, 22h; ^[b] –the cyclisation of citronellal to isopulegol: 100 mg catalyst, 1.0 mL citronelal, 5 mL toluene, 80° C, 6h; ^[c]- the second catalytic charge; ^[d]- the third catalytic charge

Catalytic pathway

Angew. Chem. Int. Ed., doi: 10.1002/ANIE.201002090

Size Tunable Gold Nanorods Evenly Distributed in the Channels of Mesoporous Silica

Scheme 1. Synthesis scheme of *in situ* growth of gold nanorods in the channels of SBA-15.

TABLE 2. N₂-Adsorbption Data and Length of Nanorods in Different Samples

	S _{BET} (m²/g)ª	V _{вJН} (cc/g) ^b	D _{BJH} (nm) ^ø	length of rods (nm) ^c
SBA-15	613	0.899	4.89	
APTES-SBA-15	436	0.721	4.88	
seeds/SBA-15	421	0.697	4.93	3—5 (spheres)
rods40/SBA-15	400	0.662	4.88	20-30
rods100/SBA-15	372	0.691	4.83	30-50
rods400/SBA-15	410	0.654	5.53	100-200

"The surface area S_{BET} is calculated by BET method. "The pore volume and the pore size distribution are determined by the BJH model applied to the desorption branch of isotherm. The length of nanorods is determined by TEM.

ACS Nano, 2 (2008) 1205–1212

Figure 1. HAADF-STEM images of the (A) seeds/SBA-15 and (B) rods100/SBA-15 (inset is a BF-TEM image at higher magnification); (C) BF-TEM image of unsupported Au rods after removing silica matrix; and (D) HR-TEM image of single-crystalline domain at unsupported Au rods (the inset shows the corresponding fast Fourier transform of the area indicated).

Figure 2. Tomography visualization of rods100/SBA-15: (A) digital slices though the reconstructed volume (the inset is the fast Fourier transform of order porous structure of SBA-15); (BF) overall visualization of the gold nanorods embedded in a small piece of SBA-15 viewed from diffrent directions; and (G) the aspect ratio statistics of the rods.

Figure 3. HAADF-STEM images of the (A) rods40/SBA-15 and (B) rods400/SBA-15. The insets are the BF-TEM images at higher magnification

Acknowledgements

Professors:

Christopher Hardacre Ryan Richards Walter Leitner Simona M. Coman

Jean-Pierre GenêtHans-Peter SteinrückVéronique MicheletJ. Michael GottfriedA.v. Humboldt Foundation

Florentina Neațu

on PhD Valentin Cimpeanu

PhDs: Cristina Paun

Roxana Bota

PNCDI II, parteneriate Cooperari interguvernamentale

Catalytic reaction

